Lagrange Carpani ile cozelim.
$f(x,y)=x^2-y^2$
$g(x,y)=x^2+y^2-1$
_______________________________________
$\mathcal{L}(x,y,\lambda)=f(x,y)-\lambda g(x,y)$
$\mathcal{L}(x,y,\lambda)=x^2-y^2-\lambda(x^2+y^2-1)$
$\begin{array}{lr} \dfrac{\partial\mathcal{L}}{\partial x}=2x-2\lambda x=0&&&&&(1 ) \\ \\ \dfrac{\partial\mathcal{L}}{\partial y}=-2y-2\lambda y=0 &&&&& (2) \\\\ \dfrac{\partial\mathcal{L}}{\partial \lambda}=x^2+y^2-1=0&&&&& (3) \end{array}$
$\begin{array}{lr} (1) \quad x(1-\lambda)=0\implies x=0\quad\text{veya}\quad \lambda=1& \\ \\ (2) \quad y(1+\lambda)=0\implies y=0\quad\text{veya}\quad \lambda=-1 \end{array}$
$(3)$'den $ x=0\implies y=\mp1,\quad (0,1), (0,-1)$ ekstremum noktalari.
$(3)$'den $y=0\implies x=\mp1,\quad (1,0),(-1,0)$ ekstremum noktalari.
Bu noktalari fonksiyonda yerine yazalim.
$f(0,1)=0^2-1^2=-1$ min noktasi
$f(0,-1)=0^2-(-1)^2=-1$ min noktasi
$f(1,0)=1^2-0^2=1$ max noktasi
$f(-1,0)=(-1)^2-0^2=1$ max noktasi
$(x,y)=(0,0)$ semer noktasidir ve $(3).$ denklemi saglamaz.