Binom açılımından $\left(1+\dfrac1n\right)^n\ge2$ olduğu aşikar;
$\left(1+\dfrac1n\right)^n\le3$ için;
$\left(1+\dfrac1n\right)^n=\displaystyle\sum_{i=0}^n\dbinom{n}{i}\dfrac{1}{n^i}=1+1+\displaystyle\sum_{i=2}^n\dbinom{n}{i}\dfrac{1}{n^i}$
$=2+\displaystyle\sum_{i=2}^n\dfrac{n!}{i!(n-1)!}\dfrac{1}{n^i}=2+\displaystyle\sum_{i=2}^n\dfrac{n(n-1)(n-2)...(n-(i-1))}{n^i}\dfrac{1}{i!}$
$\le 2+\displaystyle\sum_{i=2}^n\dfrac{1}{i!}\le 2+\displaystyle\sum_{i=2}^n\dfrac1{2^{i-1}}<2+\displaystyle\sum_{i=1}^\infty=3$
$\Box$