$e^{z}=\lim _{n\rightarrow \infty }\left( 1+\dfrac {z} {n}\right) ^{n}=\sum _{k=0}^{\infty }\dfrac {z^{k}} {k^{\infty }}$
ifadesindeki limitten yola çıkarak dizi toplamını nasıl elde edebilirim?
Bunu yaptıktan sonra $e^{iy}=\cos y+i\sin y$ ifadesini göstereceğim. Bu kısım sin ve cos seri açılımından geliyor. Onu yapabiliyorum ama limitten diziye nasıl geçeceğimi bilemedim. n değeri sonsuza gittiği için ayrı ayrı limit toplamı olarak alamıyoruz gibi hatırlıyorum. Eğer alabiliyorsak zaten kolay oluyor.