$f'(z)=\lim\limits_{h\rightarrow 0}\frac{f(z+h)-f(z)}{h}=\lim\limits_{h\rightarrow 0}\frac{|z+h|-|z|}{h}$ $h=a+ib$ olmak üzere
$$\lim\limits_{a\rightarrow 0}\frac{|z+a|-|z|}{a}$$
$$=\lim\limits_{a\rightarrow0} \frac{\sqrt{(x+a)^2+y^2}-\sqrt{x^2+y^2}}{a}$$
$$=\lim\limits_{a\rightarrow0} \frac{(x+a)^2+y^2-(x^2+y^2)}{a.\big(\sqrt{(x+a)^2+y^2}+\sqrt{x^2+y^2}\big)}$$
$$=\lim\limits_{a\rightarrow0} \frac{x^2+2ax+a^2-x^2}{a.\big(\sqrt{(x+a)^2+y^2}+\sqrt{x^2+y^2}\big)}$$
$$=\lim\limits_{a\rightarrow0} \frac{a.(2x+a)}{a.\big(\sqrt{(x+a)^2+y^2}+\sqrt{x^2+y^2}\big)}$$
$$=\lim\limits_{a\rightarrow0} \frac{2x+a}{\sqrt{(x+a)^2+y^2}+\sqrt{x^2+y^2}}$$
$$=\frac{2x}{2\sqrt{x^2+y^2}}=\frac{x}{\sqrt{x^2+y^2}}$$
$$\lim\limits_{b\rightarrow 0}\frac{|z+ib|-|z|}{ib}$$
$$=\lim\limits_{b\rightarrow0} \frac{\sqrt{x^2+(y+b)^2}-\sqrt{x^2+y^2}}{ib}$$
$$=\lim\limits_{b\rightarrow0} \frac{x^2+(y+b)^2-(x^2+y^2)}{ib.\big(\sqrt{x^2+(y+b)^2}+\sqrt{x^2+y^2}\big)}$$
$$=\lim\limits_{b\rightarrow0} \frac{y^2+2by+b^2-y^2}{ib.\big(\sqrt{(x+a)^2+y^2}+\sqrt{x^2+y^2}\big)}$$
$$=\lim\limits_{b\rightarrow0} \frac{b.(2y+b)}{ib.\big(\sqrt{(x+a)^2+y^2}+\sqrt{x^2+y^2}\big)}$$
$$=\lim\limits_{b\rightarrow0} \frac{2y+b}{i.\big(\sqrt{(x+a)^2+y^2}+\sqrt{x^2+y^2}\big)}$$
$$=\frac{2y}{2i\sqrt{x^2+y^2}}=\frac{y}{i\sqrt{x^2+y^2}}$$
$h=a$ ile $h=b$ birbirinden farklı $\bigg(\frac{x}{\sqrt{x^2+y^2}}\not=\frac{y}{i\sqrt{x^2+y^2}}\bigg)$ olduğu için $f$ fonksiyonu türevlenebilir değildir.
|