Kanıt. $n$ üzerine tümevarımla.
Başlangıç Adımı. $n=0$ için bariz.
Tümevarım Adımı. $n$ için doğru olsun. $n+1$ doğru olduğunu gösterelim. $X=\left\{ a_{1}\ldots ,a_{n+1}\right\}$ ve $Y=\left\{ a_{1}\ldots ,a_{n}\right\}$ olsun. Demek ki $X$'in $a_{n+1}$ elemanını içermeyen $'2^n$ tane ve $a_{n+1}$ elemanını içeren yine $2^n$ tane altkümesi vardır. Yani $X$'in toplamı $2^n+2^n=2^{n+1}$.
Anlamadığım nokta kalın siyah cümle: neden yine ''$a_{n+1}$ elemanını içeren yine $2^n$ tane altkümesi vardır.'' ki?