$1.2+2.3+3.4+...+n.(n+1)=1.(1+1)+2.(2+1)+3.(3+1)+4.(4+1)+...+n.(n+1) $
Şeklinde açıp dağılma özelliğini kullanalım
$\overbrace{1.1}^{1^2}+1+\overbrace{2.2}^{2^2}+2+\overbrace{3.3}^{3^2}+3+...+\overbrace{n.n}^{n^2}+n =\overbrace{1^2+2^2+3^2+...+n^2}^{\dfrac{n.(n+1).(2n+1)}{6}}+\overbrace{1+2+3+...+n}^{\dfrac{n.(n+1)}{2}} $
$\dfrac{n.(n+1).(2n+1)}{6}+\dfrac{n.(n+1)}{2}=\dfrac{n.(n+1).(n+2)}{3} $
Ara formüllerden biri;
$1+2+3+...+(n-2)+(n-1)+n=A $
$n+(n-1)+(n-2)+...+3+2+1=A $
taraf tarafa toplayalım.
$\overbrace{(n+1)+(n+1)+(n+1)+...(n+1)}^{n tane } =2.A $
$n.(n+1)=2.A $ ve $\dfrac{n.(n+1)}{2}=A $
Diğeri antrenman olsun