$\left.\begin{array}{lll}3^a=125 \\ 5^b=15 \end{array}\right\}\Rightarrow\left.\begin{array}{ccc} log_3125=a \\ log_515=b\end{array}\right\}\Rightarrow \left.\begin{array}{lll} log_35^3=a \\ log_55.3=b \end{array}\right\}\Rightarrow \left.\begin{array}{ccc} 3log_35=a \\ log_55+log_53=b \end{array}\right\}\Rightarrow$
$\Rightarrow log_55+log_53=b$
$\Rightarrow 1+log_53=b$
$\Rightarrow log_53=b-1$
$\Rightarrow log_35=\frac{1}{b-1}$
$\Rightarrow 3.log_35=3.\frac{1}{b-1}=a$
$\Rightarrow a=\frac{3}{b-1}$