Farklı bir şekilde de çözülebilir (Cebir Analiz karışımı)
$t^3-5t^2+3t-xyz$ polinomunun kökleri : $x+y+z=5$ ve $xy+yz+zx=3$ sağlayan $x,y,z$ (gerçel veya karmaşık) sayılarıdır.
Bu polinomların farkı sabit olduğuna göre, grafikleri ($s$-$t$ düzleminde) $s=t^3-5t^2+3t=t(t^2-5t+3)$ ( onlardan 3 gerçel kökü olan biri) eğrisininin düşey olarak ($s$ eksenini düşey kabul ediyorum) hareket etmesiyle oluşurlar. (Belli sınırlar arasında! Çok fazla aşağı veya yukarı hareket ettiğinde gerçel kök sayısı bire düşüyor)
(Hepsinin ortak türevi olan) $3t^2-10t+3$ polinomunu iki farklı gerçel kökü ($\frac13$ ve $3$) olduğu kolayca görülüyor. Öyleyse bu eğrilerin tümünün, türev ile, bir yerel maksimumu, ($t=\frac13$ de) ve bir yerel minimumu ($t=3$ de) vardır. Bu eğriyi hayal etmek zor değil ("tipik",pozitif başkatsayılı, yerel maksimum ve yerel minimuma sahip 3. derece polinom grafiği).
Onlardan birinin grafiği aşağıda: (https://www.wolframalpha.com ile çizilmiştir)
Bu eğriyi (üç gerçel köke sahip olma koşulu ile) aşağı yukarı hareket ettirerek gerçel köklerin en büyüğünü (yani $t$ ekseni en sağdaki kesim noktasının koordinatını) nasıl maksimum yapabiliriz?
Bunun için yerel maksimuma eriştiği anda ( $t=\frac13$ iken) $t$ eksenine teğet olması gerekli ve yeterli olduğuna kendinizi inandırabilirsiniz. Aşağıdaki gibi: (https://www.wolframalpha.com ile çizilmiştir)
Öyleyse, 3 gerçel köke sahip ve gerçel köklerinin en büyüğü maksimum olan polinomumun küçük kökleri $\frac13,\frac13$ (yani $y=z=\frac13$) olmalıdır. Artık maksimum $x$ i bulmak çok kolay.