Her iki ifadenin karesini alır ve taraf tarafa toplarsak.
$sin^2x+cos^2x+sin^2y+cos^2y+2.(sinx.cosy-siny.cosx)=\frac{13}{36}$ gelir.2 parantezine alınan bir $sin(x-y)$ olduğu bellidir.
$2+2.sin(x-y)=\frac{13}{36}$ ise $sin(x-y)=\frac{-59}{72}$ gelir.
İlk ifadeyi taraf tarafa toplarsak ve sin ve cos'lu toplam formülü kullanırsak.
$2.cos(\frac{x+y}{2}).sin(\frac{x-y}{2})+2.cos(\frac{x+y}{2}).cos(\frac{x-y}{2})=\frac{5}{6}$ ise paranteze alırsak.
$2.cos(\frac{x+y}{2}).(sin(\frac{x-y}{2}+cos(\frac{x-y}{2})=\frac{5}{6}$ olur.
$x+y=2a$ ve $x-y=2b$ dersek.$sin(x-y)=sin(2b)=2.sinb.cosb=(sinb+cosb)^2-1=\frac{-59}{72}$ gelir.
$2.cos(a).((sin(b)+cos(b))=\frac{5}{6}$ olur.$Sinb+cosb=\frac{\sqrt{11}}{6}$ gelir.
Bunu yerine yazarsak.$2.cos(a).\frac{\sqrt{11}}{6}=\frac{5}{6}$ Buradan $cosa=\frac{5}{2.\sqrt{11}}$ gelir.Bize sorulan sin(2a) olduğuna göre $cos(2a)=2cosa^2-1$ olduğuna göre Buradan cos2a bulunur daha sonra üçgen çizip sin2a -'da bulunur.