Yukarıdaki ilk eşitsizlik ağırlıklı, aritmetik ortalama geometrik ortalama teoremi.Kanıtlamak için Jensen eşitsizliğinden yararlanabilirsiniz $f(x)=-\ln x$ seçerseniz $f''(x)=1/x^2$ olurki Pozitif reel sayılarda dışbükey dir. $$-\ln(a_1v_1+\cdots+a_nv_n) \le -v_1\ln a_1-\cdots-v_n\ln a_n$$ elde edilir buda $$v_1\ln a_1+\cdots+v_n\ln a_n \leq \ln(a_1v_1+\cdots+a_nv_n) $$ dir.logaritma özellikleri kullanılarak kolayca
$$\ln (a_1^{v_1}a_2^{v_2}\cdots a_n^{v_n} )\leq \ln(a_1v_1+\cdots+a_nv_n) $$ bu da
$$a_1v_1+\cdots +a_n v_n \geq a_1^{v_1} a_2^{v_2} \cdots a_n^{v_n} $$
ki istenen eşitsizlik elde edilmiş olur