f=(x,y)'nin bir P noktasındaki bir yönlü türevi bulmak istersek, yani belirli bir u = ai + bj birim vektörüne paralel ve P noktasından geçen düzlem ile yüzeyin kesişiminden oluşan eğrinin P noktasındaki teğetinin eğimini, hesaplamalarımız bizi şu sonuca götürür (ispata bakınız)
Du(x,y) = fx(x,y)a + fy(x,y)b
Burada bir iç çarpım var sanki... Yani gardient vektörü fx(x,y)i + fy(x,y)j ile u vektörünün iç çarpımı.
Gradient, xy düzleminden vectör uzayına bir fonksiyondur yani belirli bir noktadaki gradient vektörü nedir sorusuna cevap veren fonksiyon. (x,y) noktasını alır fx(x,y)i + fy(x,y)j vektörüne götürür.
İki bileşenli gradient vektörü bize şunu söyler... sezgisel bir örnek verirsek, yüzeyimizde yürüyen bir dağcı hangi yolla yukarı çıktığında yüksekliğin değişme hızı en fazla olur? cevap: gradient vectör yönünde (ispata bakınız)
Eğer fonksiyonumuzu F(x,y,z) = u şeklinde düşünürsek bunun da bir gradient vectörü vardır ve üç bileşenlidir. Bunun temel yorumu, üç bileşenli gradient vektörü bize 4 boyutlu bir uzayda u'nun en hızlı değiştiği yönü göstermesidir. Bunu gözünüzde canlandırmak mümkün değil çünkü 3 boyutlu canlılarız :)
Fakat bir önmeli durum daha söz konusu... Eğer üç değişkenli fonksiyonumuzun düzey yüzeyi alınırsa, mesela F(x,y,z,) = k, gösterilebilir ki, gradient vektörü bu yüzeyin belirli bir P noktasında teğet düzleme normaldir.
Ayrıca diyelim elimizde f(x,y) = z var, bu durumda f(x,y) - z = 0 bir düzey yüzeyi olarak görülebilir ki, bu durumda normal bildiğimiz gibi, fx(x,y)i + fy(x,y)j - k yani gradient vektör olur. z değişkenine göre z'nin türevinin -1 olduğuna dikkat ediniz.