$x_0\in D(A),$ $\epsilon >0$ olsun ve $|B(x_0,\epsilon )\cap A|<\aleph_0$ olduğunu varsayalım.
$\left.\begin{array}{rrr} |B(x_0,\epsilon)\cap A|<\aleph_0\Rightarrow (\exists x_1,x_2,\ldots ,x_n \in X)(B(x_0,\epsilon)\cap A=\{x_1,x_2,\ldots ,x_n\}) \\ \\ \delta:=\min \{d(x_0,x_1),d(x_0,x_2),\ldots ,d(x_0,x_n)\} \end{array}\right\}\Rightarrow$
$\Rightarrow (B(x_0,\delta)\setminus\{x_0\})\cap A=\emptyset$
$\Rightarrow x_0\notin D(A)\Big{/} \text{Çelişki.}$