$(X,\tau)$ kompakt uzay$,$ $A\in \mathcal{C}(X,\tau),$ $\mathcal{A}\subseteq \tau$ ve $A\subseteq \cup\mathcal{A}$ olsun.
$\left.\begin{array}{r} (\mathcal{A}\subseteq \tau)(A\subseteq \cup\mathcal{A}) \\ \\ A\in \mathcal{C}(X,\tau)\Rightarrow \setminus A\in \tau \end{array} \right\}\Rightarrow \begin{array}{c} \\ \\ \left. \begin{array}{r} (\mathcal{B}:=\mathcal{A}\cup\{\setminus A\}\subseteq \tau)(X=\cup \mathcal{B}) \\ \\(X,\tau), \text{ kompakt uzay} \end{array} \right\} \Rightarrow \end{array}$
$\left.\begin{array}{rr} \Rightarrow (\exists \mathcal{B}^*\subseteq \mathcal{B})(|\mathcal{B}^*|<\aleph_0)(X=\cup\mathcal{B}^*) \\ \\ A\cap (\setminus A)=\emptyset \end{array}\right\}\Rightarrow (\exists\mathcal{A}^*\subseteq \mathcal{A})(|\mathcal{A}^*|<\aleph_0)(A\subseteq \cup \mathcal{A}^*)\Big{/} A, \ \tau\text{-kompakt}.$