Şunu ispatlamak yeterlidir.
Sabit olmayan her polinomun 0 değeri almadığı bir nokta vardır.
Tümevarımla:
1. $n=1$ için cisim sonlu olmadığından kolay.
2 $n-1$ için önerme doğru olsun. $f(x_1,x_2,\ldots,x_n)$ sabit olmayan bir polinom olsun. Bu polinomda, (kısaltmalar yapıldıktan sonra) $x_i$ lerden en az biri bulunacaktır. $i=1$ varsayabiliriz. ($k>0$) $f(x_1,x_2,\ldots,x_n)=x_1^kg(x_2,\ldots,x_n)+\cdots$ (başka $x_1^k$ terimi yok) olsun. Tümevarım hipotezinden, $g\neq0$ olduğu için $g(a_2,a_3,\dots,a_n)\neq0$ o. ş. sayılar vardır. $h(x_1)=f(x_1,a_2,\ldots,a_n)$ bir değişkenli sıfırdan farklı bir polinom olduğundan ve cisim sonlu olmadığından $h(a_1)\neq0$ o. ş. $a_1$ sayısı vardır. $f(a_1,a_2,\ldots)=h(a_1)\neq0$ olur.