n elemanlı bir kümenin alt kümelerinden, hiçbiri bir diğerinin alt kümesi olmayacak şekilde
n çiftse en çok
$\left( \begin{matrix} n\\ \dfrac {n} {2}\end{matrix} \right)$
n tekse en çok
$\left( \begin{matrix} n\\ \dfrac {n\mp 1} {2}\end{matrix} \right)$ küme seçilebilir.
Bu ifade nasıl kanıtlanabilir?
Öncelikle C(n,m) kombinasyonu kadar m elemanlı alt kümeleri alalım.Cevaba m elemanlılar dışında bir küme dahil edilemez.Çünkü m elemanlı kümeler içerisinde kendisinden daha az elaman sayısına sahip olan her alt kümeyi kapsayan bir küme vardır.Kendisinden daha fazla elaman sayısına sahip olan kümelerin her biri de bu m elemanlılardan birini mutlaka kapsar.Önemli olan max sonuca ulaşmak adına alt küme için hangi eleman sayısını seçtiğimiz
Elimdeki kaynakta yukarıda yazdığım genelleme yapılmış.Fakat nasıl kanıtlanabileceğine dair fikir yürütemiyorum