$R$ bir halka, $I$ da bir ideal olsun. Oncelikle,
-
$I$ bir asal idealdir ancak ve ancak $R / I$ bir tamlik bolgesi ise.
-
$I$ bir maksimal idealdir ancek ve ancak $R / I $ bir cisim ise.
Simdi, $R$ bir Boole halkasi (Her $x \in R$ icin $x^2 = x$) ve $I$ da bir asal ideal olsun.
Demek ki $R / I$ bir tamlik bolgesi. $\overline{x} \in R/I$ alalim. $$\overline{x}^2 = \overline{x} \; \overline{x}= \overline{xx} = \overline{x}$$ oldugunu gozlemleyelim. (Yani $R / I$ da bir Boole halkasi.) O zaman, $$0 = \overline{x}^2 - \overline{x} = \overline{x}(\overline{x} -1) $$ Ama $R/ I$ bir tamlik bolgesi. O zaman, $\overline{x} = 0$ ya da $\overline{x} = 1$. Demek ki, $R/I$'nin iki elemani varmis. Yani, $$R/I \cong \mathbb{Z}/2\mathbb{Z}$$
Yukaridaki "2."'den oturu $I$'nin bir maksimal ideal olmasi gerekiyor.
Not: Kanitin yarisinda, $R$'nin birimli bir halka oldugunu kullandigimi farkettim. Eger, halkada $1$ yoksa ne yapmak gerek bilemiyorum su an.
Not2: Ayni zamanda $R$'nin degismeli oldugunu da kullandim. Ama her Boole halkasi degismelidir zaten. Bunu gostermek icin $x + x = (x + x)^2$ esitliginden $2 x = 0$ geldigini gormek ve sonra $(x+y)^2 = x+ y$ esitligini kullanmak yeterli.