$(\Rightarrow): \ d_1\overset{L}{\sim} d_2$ olsun.
$------------------------------------$
(Amacımız $i$ birim (özdeşlik) fonksiyonunun $(d_1\text{-}d_2)$ ve $(d_2\text{-}d_1)$ Lipschitz sürekli olduğunu yani $$(\exists k_1>0)(\forall x\in X)(\forall a\in X)(d_2(i(x),i(a))\leq k_1 \cdot d_1(x,a))$$
ve
$$(\exists k_2>0)(\forall x\in X)(\forall a\in X)(d_1(i(x),i(a))\leq k_2\cdot d_2(x,a))$$ önermelerinini doğru olduğunu göstermek.)
$------------------------------------$
$\left.\begin{array}{rr}d_1\overset{L}{\sim} d_2\Rightarrow (\exists \lambda,\mu>0)(\forall x\in X)(\forall a\in X)(\lambda \cdot d_1(x,a)\leq d_2(x,a)\leq \mu \cdot d_1(x,a)) \\ \\ k_1:=\mu\end{array}\right\}\Rightarrow $
$\Rightarrow (\exists k_1 >0)(\forall x\in X)(\forall a\in X)(d_2(i(x),i(a))= d_2(x,a)\leq k_1 \cdot d_1(x,a)).$
O halde $i$ fonksiyonu $(d_1\text{-}d_2)$ Lipschitz süreklidir.
$\left.\begin{array}{rr}d_1\overset{L}{\sim} d_2\Rightarrow (\exists \lambda,\mu>0)(\forall x\in X)(\forall a\in X)(\lambda \cdot d_1(x,a)\leq d_2(x,a)\leq \mu \cdot d_1(x,a)) \\ \\ k_2:=\frac1{\lambda}\end{array}\right\}\Rightarrow $
$\Rightarrow (\exists k_2>0)(\forall x\in X)(\forall a\in X)(d_1(i(x),i(a))= d_1(x,a)\leq k_2 \cdot d_2(x,a)).$
O halde $i$ fonksiyonu $(d_2\text{-}d_1)$ Lipschitz süreklidir.
$(\Leftarrow): \ i, \ (d_1\text{-}d_2)$ ve $(d_2\text{-}d_1)$ Lipschitz sürekli olsun.
$\left.\begin{array}{rr} i, \ (d_1\text{-}d_2) \text{ Lipschitz sürekli}\Rightarrow (\exists k_1>0)(\forall x\in X)(\forall a\in X)(d_2(i(x),i(a))\leq k_1 \cdot d_1(x,a)) \\ \\ i, \ (d_2\text{-}d_1) \text{ Lipschitz sürekli}\Rightarrow (\exists k_2>0)(\forall x\in X)(\forall a\in X)(d_1(i(x),i(a))\leq k_2 \cdot d_2(x,a))\\ \\ \left(\lambda :=\frac{1}{k_2}\right)(\mu:= k_1) \end{array}\right\}\Rightarrow$
$\Rightarrow (\lambda, \mu>0)(\forall x\in X)(\forall a\in X)(\lambda\cdot d_1(x,a)\leq d_2(i(x),i(a))=d_2(x,a)\leq \mu \cdot d_1(x,a)).$