$(\Rightarrow):$ $d_1\sim d_2$ ve $\epsilon>0$ olsun.
$\left.\begin{array}{rr} d_1\sim d_2 \\ \\ \epsilon>0 \end{array}\right\}\Rightarrow (\exists\delta_1>0)(\exists\delta_2>0)(\forall x\in X)(\forall y\in X)[(d_1(x,y)<\delta_1\Rightarrow d_2(x,y)<\epsilon)\wedge (d_2(x,y)<\delta_2\Rightarrow d_1(x,y)<\epsilon)]$
$\overset{(1)}{\Rightarrow} (\exists\delta_1>0)(\exists\delta_2>0)\Big{(}\Big{[}(\forall x\in X)(\forall y\in X)(d_1(x,y)<\delta_1\Rightarrow d_2(x,y)<\epsilon)\Big{]}\wedge \Big{[}(\forall x\in X)(\forall y\in X)(d_2(x,y)<\delta_2\Rightarrow d_1(x,y)<\epsilon)\Big{]}\Big{)}$
$\overset{(2)}{\Rightarrow} (\exists\delta_1>0)\Big{(}\Big{[}(\forall x\in X)(\forall y\in X)(d_1(x,y)<\delta_1\Rightarrow d_2(x,y)<\epsilon)\Big{]}\wedge \Big{[}(\exists\delta_2>0)(\forall x\in X)(\forall y\in X)(d_2(x,y)<\delta_2\Rightarrow d_1(x,y)<\epsilon)\Big{]}\Big{)}$
$\overset{(2)}{\Rightarrow}\Big{[}(\exists\delta_1>0)(\forall x\in X)(\forall y\in X)(d_1(x,y)<\delta_1\Rightarrow d_2(x,y)<\epsilon)\Big{]}\wedge \Big{[}(\exists\delta_2>0)(\forall x\in X)(\forall y\in X)(d_2(x,y)<\delta_2\Rightarrow d_1(x,y)<\epsilon)\Big{]}.$
Not: $(1)$ ve $(2)$ nolu geçişlerin gerekçesi:
$(1)$ nolu geçişin gerekçesi: $\forall x(p(x)\wedge q(x))\equiv \forall xp(x)\wedge \forall xq(x)$
$(2)$ nolu geçişin gerekçesi: $\exists x(p\wedge q(x))\equiv p\wedge \exists xq(x)$
$--------------------------------------------------$
$(\Leftarrow):$ $i, \ (d_1\text{-}d_2)$ ve $(d_2\text{-}d_1)$ düzgün sürekli ve $\epsilon>0$ olsun.
$\left.\begin{array}{rr} i, \ (d_1\text{-} d_2) \text{ düzgün sürekli} \\ \\ \epsilon>0 \end{array}\right\}\Rightarrow (\exists\delta_1>0)(\forall x\in X)(\forall y\in X)(d_1(x,y)<\delta_1\Rightarrow d_2(x,y)<\epsilon)\ldots (1)$
$\left.\begin{array}{rr} i, \ (d_2\text{-} d_1) \text{ düzgün sürekli} \\ \\ \epsilon>0 \end{array}\right\}\Rightarrow (\exists\delta_2>0)(\forall x\in X)(\forall y\in X)(d_2(x,y)<\delta_2\Rightarrow d_1(x,y)<\epsilon)\ldots (2)$
$(1),(2)\Rightarrow (\exists\delta_1>0)(\forall x\in X)(\forall y\in X)(d_1(x,y)<\delta_1\Rightarrow d_2(x,y)<\epsilon)\wedge (\exists\delta_2>0)(\forall x\in X)(\forall y\in X)(d_2(x,y)<\delta_2\Rightarrow d_1(x,y)<\epsilon)$
$\Rightarrow (\exists\delta_1>0)\big{[}(\forall x\in X)(\forall y\in X)(d_1(x,y)<\delta_1\Rightarrow d_2(x,y)<\epsilon)\wedge (\exists\delta_2>0)(\forall x\in X)(\forall y\in X)(d_2(x,y)<\delta_2\Rightarrow d_1(x,y)<\epsilon)\big{]}$
$\Rightarrow (\exists\delta_1>0)(\exists\delta_2>0)\big{[}(\forall x\in X)(\forall y\in X)(d_1(x,y)<\delta_1\Rightarrow d_2(x,y)<\epsilon)\wedge (\forall x\in X)(\forall y\in X)(d_2(x,y)<\delta_2\Rightarrow d_1(x,y)<\epsilon)\big{]}$
$\Rightarrow (\exists\delta_1>0)(\exists\delta_2>0)(\forall x\in X)(\forall y\in X)\big{[}(d_1(x,y)<\delta_1\Rightarrow d_2(x,y)<\epsilon)\wedge (d_2(x,y)<\delta_2\Rightarrow d_1(x,y)<\epsilon)\big{]}.$