$a_1,a_2,A,B>0$ özel durumunda daha hızlı çözüm:
(Bu durumda, dizideki tüm terimlerin pozitif olacağı aşikardır)
$\lim \frac{a_{n+1}}{a_n}=L$ olsun. (Fibonnaci dizisinde bu limitin $\phi$ (altın oran) olduğunu hatırlayın.)
Verilen eşitlikten ($a_{n+2}=Aa_{n+1}+Ba_n$)
$\frac{a_{n+2}}{a_{n+1}}=A+B\frac{a_n}{a_{n+1}}$ olur. Buradan (alt dizi limit teoremi de kullanarak her iki tarafın limiti alınıp)
$L=A+\frac BL$ yani $L^2-AL-B=0$ bulunur. ($B>0$ kabul edildiği için) Bu denklemin bir tek pozitif kökü vardır, dolayısıyla $L$, o pozitif köke eşit olmalıdır. Pozitif köküne $b_1$ diyelim.
Oran testinden, $\sum a_nx^{n-1}$ kuvvet serisinin yakınsaklık yarıçapı $\frac1{b_1}>0$ olarak bulunur.
(SORU: Bu çözümdeki hatayı bulunuz)