$a \ge b$ ise $$|a-b|=a-b$$ olur ve $$\max\{a,b\}=a= \frac12 2a=\frac12(a+b+ (a-b))=\frac12(a+b+ |a-b|)$$ olur ve $$\min\{a,b\}=b= \frac12 2b=\frac12(a+b- (a-b))=\frac12(a+b- |a-b|)$$ olur. (Zaten genelligi bozmama dedigimiz durum ile bu durumu incelemek yeterli).