Merhabalar,
$\text{Teorem}$ $$|x-a|+|x-b|+|x-c|+\cdots+|x+c|+|x+b|+|x+a|=c$$ $c$ sabit. Şeklindeki simetrik denklemlerde eğer $x_0$ bir çözüm ise $-x_0$ da bir çözümdür.
$\text{İlginç Örnek (çok da değil gerçi)}$
$|x-10|+|x-9|+\cdots+|x+9|+|x+10|=c$ denkleminin tek kökü vardır. Buna göre $c$ sabitini bulunuz.
$\text{Çözüm}$
Eğer $x_0$ bir kök ise $-x_0$ da bir köktür. Ve eğer tek kök varsa $x_0=-x_0$ buradan $2x_0=0\implies x_0=0$ olmalıdır. Buna göre mutlak değerli ifadeleri açarsak $$(10+9+8+7+6+5+\cdots+1+0)+(0+1+2+\cdots+8+9+10)$$ $$=2\dfrac{10\cdot11}{2}=110=c$$ bulunur.
**)Teoremi ispatlayınız (**