$\dfrac{x^2}{x^3+x-2}=\dfrac{x^2}{(x-1)(x^2+x+2)}=\dfrac{A}{x-1}+\dfrac{Bx+C}{x^2+x+2}$
$x^2=A(x^2+x+2)+(Bx+C)(x-1)$
$x=1\rightarrow$ $A=1/4$
$x=0\rightarrow$ $C=1/2$
$x=-1\rightarrow$ $B=3/4$
\[ \int\dfrac{x^2}{x^{3}+x-2}dx=\frac{1}{4}\int\dfrac{1}{x-1}dx +\frac{3}{4}\int\dfrac{x+2}{x^2+x+2}dx \]
\[ \int\dfrac{x+2}{x^2+x+2}dx = \int\dfrac{x}{x^2+x+2}+\dfrac{2}{x^2+x+2}dx\]
\[ \int\frac{1}{2}\dfrac{2x}{x^2+x+2}+\dfrac{2}{x^2+x+2}dx\]
\[ \int\frac{1}{2}\dfrac{2x+1-1}{x^2+x+2}+\dfrac{2}{x^2+x+2}dx\]
\[ \int \frac{1}{2} \dfrac{2x+1}{x^2+x+2}+ \frac{1}{2}\dfrac{-1}{x^2+x+2}+\dfrac{2}{x^2+x+2}dx\]
\[ \frac{1}{2}\int \dfrac{2x+1}{x^2+x+2}dx+ \frac{3}{2}\int\dfrac{1}{x^2+x+2}dx\]
\[ \frac{3}{2}\int\dfrac{1}{x^2+x+2}dx= \frac{3}{2}\int\dfrac{1}{x^2+x+\frac{1}{4}-\frac{1}{4}+2}dx= \frac{3}{2}\int\dfrac{1}{(x+\frac{1}{2})^2+\frac{7}{4}}dx\]