Bir parabol ile doğru iki noktada kesiştiği zaman bu iki nokta arasında oluşan doğru parçasının koordinatlarını bulmakla ilgili bir soru geldiğinde ben o soruları çözebiliyorum ama ezbere bir şekilde mantığını bilmeden. Mesela
$f(x) = x^2 - 3x + k$ parabolü ile $y=5x-2$ doğrusu $A$ ve $B$ noktalarında kesişiyorlar, $[AB]$'nin orta noktasının koordinatlarını bulunuz şeklinde bir soru çözdüm az önce
kesiştikleri için birbirlerine eşitledim $x^2 - 3x + k = 5x - 2$
$= x^2 - 8x + k + 2 = 0$
buraya kadar mantıklı neden böyle yaptığımı anlıyorum sonrasında apsisini bulmak için bulduğumuz denklemde parabolün tepe noktasının apsisini bulma formülünü uyguluyoruz ve buluyoruz, ama bunu neden AB'nin apsisi kabul ediyoruz anlamıyorum tepe noktasından geçmiyorsa?
neyse apsisi buluyoruz sonra ordinatı bulmak için yerine yazmamız gerekiyor ama bu sefer bulduğumuz denklemde değil direkt doğrunun denkleminde yerine yazıyoru bunu niye yaptığımızı da anlamıyorum madem tepe noktasından geçiyor gibi düşünüyoruz neden apsisini bulduğumuz yerde değil de doğru denkleminde yazıyoruz yani?
bilale anlatır gibi anlatabilirseniz sevinirim çünkü kafam çok karışık...