$1,2,3,4,5,6$ sayıları $7$'den küçük pozitif tam sayılardır (ya da oyunda $0$ kura dışı olduğu için $0$'ı çıkartırsak $7$'nin denklik sınıfı da denilebilir) ve bu sayılardan herhangi bir sayı seçildiği zaman daima o sayıyla toplamını $7$'ye tamamlayacak başka bir sayı seçilebilir $(6,1),(2,5)$ gibi. Birinci oyuncu en başta $x$ sayısını söylerse bundan sonraki ellerde ikinci oyuncunun söylediklerini $7$'ye tamamlayacak sayıları söyleyebilir. eğer ilk sayıdan sonra $36$'ya tamamlanacak sayı $7$'nin katı ise birinci oyuncu kesinlikle kazanır. $36$'dan küçük $7$'nin katı en büyük tam sayı $35$ . demek ki oyuna başlarken $$1$$ diyerek başlanmalı. (eğer oyunda $0$ da olsaydı $2$. oyuncunun $0$ demesi durumunda $1.$ oyuncu da $0$ diyerek o eldeki sayıların toplamının $mod7$'de $0$'a denkliğini sağlardı. ama bu tekrar ederse oyunu $1.$ oyuncu oyunu kaybetmezdi ama bitmediği için kazanamazdı da o yüzden $0$ oyun dışı)