$(2a,p)=1$ oldugundan $$a\left(x-\frac{b}{2a}\right)^2\equiv \frac{b^2}{4a}-c\equiv \frac{b^2-4ac}{4a} \mod p$$ saglanir yani $$\left[2a\left(x-\frac{b}{2a}\right)\right]^2\equiv (b^2-4ac) \mod p$$ saglanir. $$2a\left(x-\frac{b}{2a}\right)=y \;\;\;\;\;\text{ ve }\;\;\;\;\; b^2-4ac=k$$ dersek sorgulayacagimiz $$y^2\equiv k\mod p$$ ne zaman saglanir? `Quadratic residue'.