$f_0=1,f_1=1\text{ ve }f_{n+2}=f_{n+1}+f_n$ şeklinde tanımlanan Fibonacci dizisi için, $f_1+f_2+f_3+\cdots+f_n=f_{n+2}-1$ olduğunu ispatlayınız.
Aklıma tümevarım geldi, ancak bir iki tane $n\in\mathbb{N}$ için denediğimde önerme sağlamıyordu. Ifadesinde bir yanlışlık olabilir mi acaba? Mesela $f_0+f_1+f_2+\cdots+f_n=f_{n+2}-1?$
Tümevarımın işe yarayacağını düşünüyorum ama başka ispat yöntemleriyle de çözümler varsa onları da merak ediyorum.