Diğer yanıtta kohomoloji gruplarının tanımını tam olarak vermiş olsam da, açık açık nasıl hesaplanabileceğini tam olarak belirtmemiştim. Şimdi, bunu yapacağız. Esasen burada bulacağımız kohomoloji grupları, kohomoloji gruplarının tanımı olarak da verilerbilir. Örneğin S. Shatz'ın Profinite Groups, Arithmetic and Geometry kitabında bir önceki yanıt aracılığıyla burada bulacağımız gruplar kohomoloji gruplarının tanımı olarak verilmekte. Çeşitli başka kitaplarda da Neukirch'in kullandığı stardart çözünüm yerine daha genel olarak izdüşümsel çözünümler kullanılmakta. Ama önünde sonunda herkes, bizim bu yanıttın sonunda kohomoloji grubu diye bulduğumuz grupları bulmakta.
Öncelikle notasyon kolaylığı için $$A_r=A_{-r-1}=Hom_G(X_r,A)$$ gösteriminde uzlaşalım. $((Hom_G(X_r,A)=Hom_G(X_{-r-1},A))$ eşitliğinin de ayrımında olun, adamı gıcık etmeyin. $X_r$, tam serbest çözünüm nedir sorusundaki yanıtta tanımlanmıştı: $G^r$'nin elemanlarıyla serbest biçimde üretilen $\mathbb{Z}[G]$-modül. Bir $G$-modül homomorfizması $G$-çarpmasıyla değişmeli olacağı için, $X_r$'den çıkan bir $G$-modül homomorfizması üreteçlerindeki değerleriyle tek türlü belirlenir. Buradan çıkan sonuç şudur. $X_r$'dan $A$'ya giden her $G$-homomorfizması $G^r$'den $A$'ya bir sıradan bir fonksiyon tanımladığı gibi $G^r$'den $A$'ya giden her sıradan fonksiyon da $X_r$'den $A$'ya giden bir $G$-homomorfizması tanımlar. Yani, eğer $G^r$'den $A$'ya giden fonksiyonları $C(G^r,A)$ ile gösterirsek, elimizde üreteçlere kıstırmak marifetiyle tanımlanan şöyle bir izomorfizma var: $$A_r=A_{-r-1}=Hom_G(X_r,A)\simeq C(G^r,A)\qquad r\geq 1$$O halde kohomoloji gruplarını $C(G^r,A)$ gruplarını kullanarak da hesaplayabiliriz. Ama öncelikle $A_0=A_{-1}$ gruplarının yerine ne koyacağımızı belirlemeliyiz. Burada da işler kolay. Bu gruplar $1$ tarafından üretilen serbest $\mathbb{Z}[G]$-modülnden $A$'ya giden $G$-homomorfizmalar, dolayısıyla $1\in G$'in görüntüsü tarafından tamamen belirlenirler. Bu da $f\longmapsto f(1)$ grup homomorfizması$$A_0=A_{-1}=Hom_G(\mathbb{Z}[G],A)\simeq A$$ izomorfizmasını verir. Son olarak, gruplarımızı bu izomorfik kopyalarıyla değiştirdiğimizde grupları birbirine bağlayan $d_i^*$ homomorfizmalarımıza denk gelecek $\delta_i$ homomorfizmalarının ne olduğunu bulmalıyız. Öncelikle $d_i^*$ homomorfizmasının ne olduğunu anımsayalım:$$A_i\simeq Hom_G(X_i,A)\ni f\stackrel{d_i^*}{\longmapsto} f\circ d_{i+1}\in Hom_G(X_{i+1},A)\simeq A_{i+1}$$Önce $\delta_0$'ı hesaplayalım. $a\in A_{-1}=A$ olsun. Bu durumda $Hom_G(X_{-1}),A$ içinde $a$'ya denk gelen (yukarıda anlattığımız izomorfizma aracılığıyla) $G$-homomorfizması $f$, $1$'i $a$'ya gönderen $G$-homomorfizmasıdır. $f$'nin görüntüsü de doğal olarak $f\circ d_0$'dır. $d_0(1)$ ise $N_G$ olarak tanımlanmıştı (Bkz: buradaki ilk yanıt). Bu da demek oluyor ki $a$'nın görüntüsü $N_G\cdot a$. Sonuç:$$a\stackrel{\delta_0}{\longmapsto}N_G\cdot a$$Diğer $\delta_i$'ler de benzer biçimde yaklaşımla hesaplanabilir. Burada hesaplanmışı var:
-
$x\in A_0=A$ için $(\delta_1x)(\sigma)=\sigma x-x$. Ufacık bir açıklama. $\delta_1 x$ tanım gereği $Hom(G,A)$ grubunun bir elemanı olmalı. Bu nedenle $\delta_1x$'i tanımlamak için $\sigma\in G$'deki görüntüsünü tarif ediyoruz. Diğer kısımlarda da aynı yöntemi uyguluyoruz.
-
$r\geq 1$ ve $x\in A_{r-1}$ için $$\delta_rx(\sigma_1,\cdots,\sigma_r)=\sigma_1x(\sigma_2,\cdots,\sigma_r)\\+\sum_{i=1}^{r-1}(-1)^ix(\sigma_1,\cdots,\sigma_i\sigma_{i+1},\sigma_{i+2},\cdots,\sigma_r)\\+(-1)^rx(\sigma_1,\cdots,\sigma_{r-1})$$
-
$x\in A_{-2}$ için $$\delta_{-1}x=\sum_{\sigma\in G}(\sigma^{-1}x(\sigma)-x(\sigma))$$
-
$r\geq 0$ ve $x\in A_{-r-2}$ için $$\delta_{-r-1}x(\sigma_1,\cdots,\sigma_r)=\sum_{\sigma\in G}\Big[\sigma^{-1}x(\sigma,\sigma_1,\cdots,\sigma_r)\\\sum_{i=1}^{r}(-1)^i(\sigma_1,\cdots,\sigma_{i-1}\sigma_i\sigma,\sigma^{-1},\sigma_{i+1},\cdots,\sigma_r)\\+(-1)^{r+1}x(\sigma_1,\cdots,\sigma_r,\sigma)\Big]$$
Özet:$$H^i(G,A)=\ker (\delta_{i+1})/im(\delta_i)$$
Artık, ufak boyutlu kohomoloji gruplarını hesaplayabilecek duruma gelmiş bulunmaktayız.