$\forall n\in\mathbb{Z}^+$ için $2n^3+3n^2+n$ ifadesinin $6$'ya bölündüğünü gösteriniz...
Merhaba, ben bu ispatı yaparken ifadeye $A$ dedim ve $A=n(n+1)(2n+1)=6(1^2+2^2+\cdots+n^2)$ olduğu için $6$ ya tam bölünür sonucuna ulaştım. Sorunun yer aldığı kitapta ancak önce iki tane ardışık sayının çarpımı olarak yazılabildiği için $2$'ye tam bölünmelidir sonucuna ulaşılmış, sonra $n=3k, 3k+1, 3k+2$ için bu sayının $3$'e bölünüp bölünmediği incelenmiş.
Benim sormak istediğim soru şu, bu sayıyı benim yaptığım gibi ardışık sayıların kareleri toplamına benzetmek doğru bir yaklaşım mıdır?