Daha hantal bir çözüm önerisi olarak, $$(1,1,1,1,1,1,1,1,1,1,1,1)\rightarrow 1 \text{ tane }\\ (3,1,1,1,1,1,1,1,1,1)\rightarrow 10 \text{ tane }\\ (3,3,1,1,1,1,1,1)\rightarrow 28 \text{ tane }\\ (3,3,3,1,1,1)\rightarrow 20 \text{ tane }\\(3,3,3,3)\rightarrow 1 \text{ tane }$$ toplamda $28+1+1+20+10=60$ tane sıralama var. Hesapları yaparken tekrarlı permütasyon kullandık $\dfrac{8!}{2!\cdot6!}$ gibi...