Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
937 kez görüntülendi

$f$ lineer donusumu $R^2$  den  $R^3$ e 

$f (x,y)=(x,x+y,x-y)$ olarak veriliyor ve

$f (R^2)$ uzayinin bulunmasi isteniyor.

Ne anlamaliyim?

Lisans Matematik kategorisinde (94 puan) tarafından  | 937 kez görüntülendi

$\mathbb{R}^2$ kümesinin $f$ fonksiyonu altındaki görüntüsü soruluyor. Yani

$$f\left[\mathbb{R}^2\right]=\left\{f(x,y)\Big{|}(x,y)\in\mathbb{R}^2\right\}=\left\{(x,x+y,x-y)\Big{|}x,y\in\mathbb{R}\right\}=?$$

İlk olarak şunu söyleyebiliriz:

$f$ fonksiyonu örten olmadığından $$f\left[\mathbb{R}^2\right]\neq\mathbb{R}^3.$$

Örten olmadığını şöyle gösterebiliriz. Örneğin $$(1,2,3)\in\mathbb{R}^3$$ fakat $$f(x,y)=(1,2,3)$$ olacak şekilde bir $$(x,y)\in\mathbb{R}^2$$ yoktur.

Hocam donusumun bire bir oldugunu da soyleyebilir miyiz? Goruntunun bir duzlem oldugunu soyleyemeyiz herhalde. Fakat baska ne olur dusunemiyorum.

Donusumun uretec(baz) vektorlerini bulabilir misin?


20,274 soru
21,803 cevap
73,476 yorum
2,428,507 kullanıcı