Bir dikdörtgenin $x$ ve $y$ kenar uzunlukları arasında $$x^2+y^2=41 \ \ \ \text{ ve } \ \ \ y-x=1$$ bağıntıları vardır. Buna göre dikdörtgenin çevresi kaçtır?
Matkafasi na hoş geldin Ezgi13312,
Lutfen bir soru sor sayfasindaki isteklere gore sorunuzu sormaya ozen gosteriniz.
Bunlardan en önemlisi çabalarınızı içeriğe eklemeniz ve takıldığınız yeri açıkça yazmanızdır.
Bulunması istenen $2x+2y$ değeri değil mi?
$(y-x)^2=y^2+x^2-2xy=1\Rightarrow 2xy=40$ bulunur. Artık $(x+y)^2$ nin hesaplanmasından istenen bulunmaz mı?
(y-x)2=1, y2-2yx-x2=1, {y2-x2=41 olduğunu biliyoruzve yerine koyarsak], 2yx=40, yx=20 olur.
Burada da y-x=1 eşitlidiğinde y değerinin yalnız bıraktığımızda delen ifadeyi yx=20 denkleminde yerine koyarsak; x(x-1)=20 x değerimizi 4 buluruz, y değeri ise 5’e eşit çıkar. Dikdörtgenin çevresi de burdan 18 bulunur.