@Lokman Gökçe
-
Peki bize biri geldi ve "Neden $(\sqrt{2})^2=2$ yapıyor" diye sordu. Biz de b şıkkındakı gibi cevapladık. Bir sonraki soru "Ya bir dakika, bu çarpma işlemi nereden geldi peki" oldu. Ne diyeceğiz?
-
"Eğer $i^2=-1$ olduğunu varsayıyorsanız ya da $i^2=-1$ olsun istiyorsanız çarpmayı böyle tanımlamak zorundasınız" ile "Çarpmanın böyle tanımlanması $i^2=-1$ olmasının bir sonucu" cümleleri arasındaki farkı ben anlamıyorum. Ikisini de aynı şeyi belirtmek için kullandım. Birine katılıp birine katılmamanızı anlayamadım. Demek ki yeteri kadar açık olamamışım tekrar deneyeyim.
Rasyonel sayılarda karesi iki olan bir sayı yok. Şimdi ben yeni bir cisim (sayı evreni) yaratmak istiyorum. Bu yeni cisimde rasyonel sayıların yanısıra karesi 2 olan bir sayı olsun istiyorum. Kolaylık olsun diye bu yeni cisme $C$ diyeceğim. Adım Özgür olduğu için bu sayıya $Ö$ diyeceğim. Bu sayının özelliği $Ö^2 = 2$ olması. Bu özellik onu rasyonel sayılardan ayırıyor.
Eğer $C$ bir cisimse (yani belirli kurallar altında toplama ve çarpma işlemi yapabiliyorsam) ve bu cisim $Ö$'yü içeriyorsa, $2Ö, 3Ö$ gibi sayıları da içermeli. Genel olarak $Ö$'yü ve rasyonel sayıları içerdiği için, her $b\in \mathbb{Q}$ için $bÖ$ sayısını da içermek zorunda bu cisim. Eğer bu $C$ kümesi üzerinde çarpma işlemi olsun istiyorsam $C$ kümesi $bÖ$ elemanlarını içermeli. $C$ kümesinin $bÖ$ elemanlarını içeriyor olması $Ö$'yü içermesinin doğal bir sonucu. Rasyonel sayıları ve $Ö$'yü içeren bir cisim $bÖ$ elemanlarını içermemezlik yapamaz.
Şimdi toplama yapalım biraz. Mesela bu cisimde $2+5Ö$ gibi elemanlar da olmalı. Olmamazlık edemezler bu elemanlar. Yoksa cisim cisim olmazdı. Mesela $3+7Ö$ de olmalı bu cisimde. Genel olarak her $a,b$ rasyonel sayıları için $a+bÖ$ şeklindeki sayıları katmak zorundayım bu cisme. $C$'nin bu sayıları içermesi bizim $Ö$'yü rasyonel sayılara katmak istememizin doğal bir sonucu.
Bu yeni cisimde başka eleman eklememiz gerekli mi? Yeni oluşturduğumuz elemanlar $a+bÖ$ şeklinde elemanlar. Mesela $1+Ö$ ve $2+4Ö$ elemanlarını alayım. Bunları toplasam ne olur? Eğer $C$ bir cisimse toplamanın sırası önemsiz ve çarpmanın toplama üzerine dağılma özelliği olmalı:
$$1+Ö+2+4Ö = 1+ 2 + Ö+4Ö = 3+ (1+4)Ö= 3+5Ö$$
Bu toplamı ben tanimlamadım. Sadece $C$'nin bir cisim olmasını istedim. Genel olarak aynı şeyi yapabilirim.
$$a +bÖ + c + dÖ = a +c + bÖ+ dÖ = a+c + (b+d)Ö$$
Yine söylüyorum. Ben bunu tanımlamadım. Sadece $C$'nin rasyonel sayıları ve $Ö$'yü içeren bir cisim olmasını istedim. Gerisi kendiliğinden geldi. Basit toplama çarpma kurallarım olmasini istiyorsam bu toplam bu olmali, olmak zorunda. Bunu tanımlamama gerek yok. Sadece $C$'nin rasyonel sayıları ve $Ö$'yü içeren bir cisim olduğunu söylesem yeter.
Şu ana kadar elimizde $a+bÖ$ şeklinde elemanlar vardı. Toplama yaparak yeni tarz elemanlar elde edemeyeceğimizi gördük. Toplam yine aynı formda oldu.
Çarpma yapmayı deneyelim. Mesela $3$ ile $2 + 5Ö$'yü carpalim. Eğer $C$ bir cisimse çarpmanın toplama üzerine dağılma özelliği olması lazım.
$$3(2+5Ö) = 3.2 + 3.5Ö = 6 + 15Ö$$
olmak zorunda. Bunu biz tanımlamadık. Çarpma ve toplamanın özelliklerinin doğal bir sonucu. Şimdi $2+3Ö$ ile $3+5Ö$'yü carpalim.
$$(2+3Ö)(3+5Ö) = 2.3 + 2.5Ö + 3Ö.3 +3Ö.5Ö = 6 + 10Ö +9Ö+ 15Ö^2$$
$Ö^2=2$ olmasının bu sayının özelliği olduğunu söyledik en başta. Bu sayıyı böyle bir sayı kabul ettik. Dolayısıyla yukarıdaki işlemi şöyle devam ettirebiliriz:
$$= 6 + 19Ö+ 15.2 = 36 + 19Ö$$
Bu işlemi ben tanımlamadım. Ben sadece toplama ve çarpmanın basit kurallara uymasını istedim. Genel olarak
$$(a+bÖ)(c+dÖ) = ac + adÖ + bÖc + bÖdÖ = ac + (ad +bc)Ö + bdÖ^2 = ac +2bd+(ad+bc)Ö $$
Tekrar ediyorum. Herhangi bir çarpma tanımlamadık. Sadece $Ö^2=2$ olsun ve toplama ve carpma basit aritmetik kurallarına uysun istedik. Doğal olarak çarpma bu oldu. Başka türlü olmazdı, olamazdı. Mümkün değildi. Çünkü $C$'nin rasyonel sayıları içeren ve karesi 2 olan bir sayıyı içeren bir küme olmasını, bu kümede toplama ve çarpma yapabilmeyi ve bu işlemlerin basit aritmetik kurallara uymasını istedim. Çarpma islemini tanımlamadım. Kendi kendine tanımlanmış oldu. Doğal sonuçtan kastım bu.
"Çarpma neden böyle tanımlandı?" Çünkü $Ö^2=2$ olan bir sayı olsun istedim.
Şimdi aynı hikayeyi reel sayılar ve karesi -1 olan bir sayi ile tekrar yazalım. Bu sayıya $Ö$ deneyelim de $i$ diyelim. Çarpma nasıl tanımlanmak zorunda?