Yukarıdaki çözümdeki
\[\int_{-\infty }^{\infty }\frac{\cos x}{x}dx\]
ıraksak olduğundan
\[\int_{-\infty }^{\infty }\frac{e^{ix}}{x}dx\]
integrali de ıraksaktır (kontür integral tekniği dikkatli kullanılmalıdır).
Bu çözümde
\[\int_{-\infty }^{\infty }\frac{\sin x}{x}dx=\frac{\pi }{2}\]
eşitliğini Reel analiz metodları ile gösterelim. Kullanacağımız bilgiler:
1) Riemann-Lebesque lemması : $f$, $\left( a,b\right) $ aralığında integrallenen ise,
\[\lim_{p\rightarrow \infty }\int_{a}^{b}f\left( x\right) \sin pxdx=0.\]
2) $\frac{1}{2}+\cos x+\cos 2x+...+\cos nx=\frac{\sin \left( \frac{2n+1}{2}%
x\right) }{2\sin \frac{x}{2}}.$
Sonuncu eşitlikten, her $n\in \mathbb{N}$ için
\[
\int_{0}^{\pi }\frac{\sin \left( \frac{2n+1}{2}x\right) }{2\sin \frac{x}{2}}%
dx=\frac{\pi }{2}
\]
elde edilir.
Ayrıca
\[\frac{1}{x}-\frac{1}{2\sin \frac{x}{2}}\]
fonksiyonunun $\left( 0,\pi \right) $ aralığında integrallenen olduğu kolayca görülür.
Riemann-Lebesque lemmasına göre,
\[
\lim_{n\rightarrow \infty }\int_{0}^{\pi }\left( \frac{1}{x}-\frac{1}{2\sin
\frac{x}{2}}\right) \sin \left( \frac{2n+1}{2}x\right) dx=0
\]
olur. Buradan
\[
\lim_{n\rightarrow \infty }\int_{0}^{\pi }\frac{\sin \left( \frac{2n+1}{2}%
x\right) }{x}dx=\lim_{n\rightarrow \infty }\int_{0}^{\pi }\frac{\sin \left(
\frac{2n+1}{2}x\right) }{2\sin \frac{x}{2}}dx=\frac{\pi }{2}
\]
çıkar (son eşitliği yukarıda hesaplamıştık). Şimdi $y=\frac{2n+1}{2}x$ dersek,
\[\lim_{n\rightarrow \infty }\int_{0}^{\frac{2n+1}{2}\pi }\frac{\sin y}{y}dy=\frac{\pi }{2}
\]
buradan da
\[\int_{0}^{\infty }\frac{\sin y}{y}dy=\frac{\pi }{2}\]
bulunur.
Not: Söz konusu integral birçok kaynakta Laplace dönüşümü yardımıyla formal olarak hesaplanır, fakat uygulanan metod pürüzlüdür.