$\mathbb N $ ile pozitif tamsayılar kümesinin belirtildiği anlaşılıyor. Burada anlaştıktan sonra farklı bir yol deneyelim:
Eşitsizliğin her $n$ pozitif tam sayısı için doğru kalmasını sağlayan $x$ değerlerinin en küçüğünün $x=1$ olduğunu iddia ediyoruz. Verilen eşitsizlikte $x=1$ yazarsak $1 > 1-\dfrac{1}{n}$ olur ki bu eşitsizliğin her $n \geq 1$ tamsayısı için sağlandığı açıktır.
Şimdi $x$ yerine $1$ 'den daha küçük bir gerçel sayı gelemeyeceğini gösterelim. Aksini iddia edelim ve bir $\epsilon > 0 $ sayısı için $x=1-\epsilon $ (elbette sabit bir değer) olsun ve $x > 1- \dfrac{1}{n} $ eşitsizliği her $n$ pozitif tam sayısı için doğru olsun. (Bakalım gerçekten olabiliyor mu?)
Bunun için $1-\epsilon > 1- \dfrac{1}{n}$ olması gerekir. Bu ise her $n$ için $\dfrac{1}{n} > \epsilon $ olması demektir. Fakat $\epsilon >0 $ sayısını $0$'a ne kadar yakın ve ne kadar küçük seçersek seçelim $\dfrac{1}{n} < \epsilon $ olmasını sağlayacak yeterince büyük bir $n$ doğal sayısı her zaman bulabiliriz. Yani daima $\dfrac{1}{n} > \epsilon $ olamıyor.
Böylece $x$'in $1$'den daha küçük seçilemediği de ispat edilmiş oluyor. O halde $x \geq 1$ dir.