Bir $x$ tamsayısı için $x^2 \equiv 0, 1, 4, 9, 16, 25, 17 \pmod{32} $ kalanları elde edilebiliyor. Buna göre $x^2 + y^2 + z^2$ için bu kalanların tüm kombinasyonlarını deneyerek $$x^2 + y^2 + z^2 \equiv 0, 1, 2, 3 , 4, 5 , 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, \\21, 22, 24, 25, 26, 27, 29, 30 \pmod{32}$$ elde edilebiliyor.
Diğer bir deyişle $$ x^2 + y^2 + z^2 \not \equiv 7, 15, 23, 28, 31 \pmod{32} $$ olmaktadır. Böylece $32n + 28$ ($n \in \mathbb N$ ) biçimindeki sayılar üç tamsayının karelerinin toplamı biçiminde ifade edilemez.
Bununla beraber bu sonuç, $7,15,23,28,31$ dışındaki diğer kalanları veren pozitif tam sayıların üç tam sayının karelerinin toplamı biçiminde ifade edilebileceği anlamına gelmez. Nitekim, $112 \equiv 16 \pmod{32}$ olduğu halde $x^2 + y^2 + z^2 \neq 112 $ dir.