Problem:
Negatif olmayan tam sayılarda tanımlı, $f$ fonksiyonu, her $x,y$ için,
$xf(y)+yf(x)=(x+y)f(x^2+y^2)$
eşitliğini sağladığına ve $f(99)=5$ olduğuna göre $f(100)$ kaça eşittir ?
Çözüm:
$xf(y)+yf(x)=(x+y)f(x^2+y^2)$ denkleminde $x=0$ yazarsak, $yf(0)=yf(y^2)$ eşitliğinden, $f(y^2)=f(0)$
elde edilir. Bu ifadeden $f$ fonksiyonunun sabit bir fonksiyon olacağı düşünülebilir. Bu düşüncemizi ispatlamaya çalışalım. Bunun için $x\not=0$ ve $y\not=0$ olmak üzere, $f(x)<f(y)$ kabul edelim. Bu durumda,
$(x+y)f(x)<xf(y)+yf(x)<(x+y)f(y)$ olur. Böylece, $f(x)<f(x^2+y^2)<f(y)$ olur. Fakat bu mümkün değildir. Çünkü, benzer şekilde devam ederek $f(x)$ ve $f(y)$ değerleri arasında sonsuz sayıda farklı değer bulunur. Fakat $f(1)=f(0)$ . Böylece her $x>1$ için, $f(x)=f(1)$ olur. Dolayısıyla $f$ sabit fonksiyondur ve $f(100)=f(99)=5$ olur.
Benim sorum şu biz $f$ fonksiyonunun sabit bir fonksiyon olduğunu ispatlamaya çalışırken $f(x)<f(y)$ varsayımından sonra $f(x)$ ile $f(y)$ arasında sayı olduğunu gösterdik. Fakat bu $f$ fonksiyonunu neden sabit yapıyor ? Örneğin $f(x)=16$ ve $f(y)= 9$ olsun. $f(x)$ ile $f(y)$ arasındaki değerler $10,11,12,13,14,15$ olacak ama bu $f$ fonksiyonunu neden sabit yapıyor ? Cevaplarınız için şimdiden teşekkür ediyorum.