Kanıt: $(\Rightarrow):$ $(X,\tau)$ kompakt uzay; $\mathcal{A}\subseteq \mathcal{B}$ ve $X=\cup\mathcal{A}$ yani $\mathcal{A}$ ailesi, $X$ kümesinin bir bazsal açık örtüsü olsun.
$\left.\begin{array}{rr}(\mathcal{A}\subseteq \mathcal{B})(X=\cup\mathcal{A}) \\ \\ \mathcal{B}, \ \tau\text{ için baz}\Rightarrow \mathcal{B}\subseteq\tau \end{array} \right\}\Rightarrow \begin{array}{rr} \\ \\ \left. \begin{array}{cc} (\mathcal{A}\subseteq \tau)(X=\cup\mathcal{A}) \\ \\ (X,\tau), \text{ kompakt uzay}\Rightarrow X, \ \tau \text{-kompakt}\end{array} \right\} \Rightarrow \end{array}$
$\Rightarrow (\exists\mathcal{A}^*\subseteq\mathcal{A})(|\mathcal{A}^*|<\aleph_0)(X=\cup\mathcal{A}^*).$
$(\Leftarrow):$ $\mathcal{A}\subseteq \tau$ ve $X=\cup\mathcal{A}$ yani $\mathcal{A}$ ailesi, $X$ kümesinin bir açık örtüsü olsun.
$\left.\begin{array}{rr} (\mathcal{A}\subseteq \tau)(X=\cup\mathcal{A}) \\ \\ \mathcal{B}, \ \tau\text{ için baz} \end{array} \right\}\Rightarrow \begin{array}{rr} \\ \\ \left. \begin{array}{rr} (\forall A\in\mathcal{A})(\exists \mathcal{B}_A\subseteq \mathcal{B})(X=\cup_{A\in\mathcal{A}}A=\cup_{A\in\mathcal{A}}(\cup\mathcal{B}_A)) \\ \\ \mathcal{A}^*:=\cup\{\mathcal{B}_A|A\in\mathcal{A}\}\end{array} \right\} \Rightarrow \end{array}$
$\left.\begin{array}{rr}\Rightarrow (\mathcal{A}^*\subseteq\mathcal{B})(X=\cup\mathcal{A}^*) \\ \\ \text{Hipotez}\end{array}\right\}\Rightarrow (\exists\mathcal{A}^{**}\subseteq\mathcal{A})(|\mathcal{A}^{**}|<\aleph_0)(X=\cup\mathcal{A}^{**}).$