$\varphi$, Euler'in $\varphi$ fonksiyonunu göstermek
üzere
$\displaystyle\sum_{k=1}^n \varphi(k)$ kaça eşittir ?
Sorunun cevabı : $\dfrac{1}{2}\displaystyle{\left(1+\sum_{k=1}^{n}\mu(k)\left\lfloor \frac{n}{k}\right\rfloor^2 \right)}$
Acaba bunu nasıl ispatlarız ? $\displaystyle\sum_{k=1}^n \varphi(k)$ toplamında ki toplanan sayıları $n$'yi bölenler ve bölmeyenler($k$ sayısı için) diye 2'ye ayırsak ardından
$\displaystyle{\sum_{k/n}^n \varphi(k)}=n$ formülünü kullanarak bir şey elde etmeye çalıştım ama olmadı. Çünkü $n$'yi bölmeyen sayıların $\varphi$ fonksiyonu altındaki toplamlarını bulmak için yol yok gibi.
Eşitliği ispatlamak için izleyebileceğim bir yol var mı? Cevaplarınız için şimdiden teşekkürler.