Şimdi sorunuzu cevaplayabiliriz.
$$\lim_{n\rightarrow \infty}\sum_{k=1}^{n}\ln\sqrt[n]{1+\frac{k}{n}}$$
$$=$$
$$\lim_{n\rightarrow \infty}\sum_{k=1}^{n}\ln\left({1+\frac{k}{n}}\right)^{\frac{1}{n}}$$
$$=$$
$$\lim_{n\rightarrow \infty}\sum_{k=1}^{n}\frac{1}{n}\ln\left({1+\frac{k}{n}}\right)$$
$$=$$
$$\lim_{n\rightarrow \infty}\sum_{k=1}^{n}\frac{2-1}{n}\ln\left({1+k\frac{2-1}{n}}\right)$$
$$=$$
$$\lim_{n\rightarrow \infty}\frac{2-1}{n}\sum_{k=1}^{n}\ln\left({1+k\frac{2-1}{n}}\right)$$
$$=$$
$$\int_{1}^{2}\ln xdx$$
$$=$$
$$(x\ln x-x)_{1}^{2}$$
$$=$$
$$2\ln 2-2-(0-1)$$
$$=$$
$$\ln 4-\ln e$$
$$=$$
$$\ln\left(\frac{4}{e}\right)$$
Not: $f:[a,b]\rightarrow \mathbb{R}$ Riemann integrallenebilir bir fonksiyon olmak üzere
$$\lim_{n\rightarrow\infty}\frac{b-a}{n}\sum_{k=1}^{n}f\left({a+k\frac{b-a}{n}}\right)=\int_{a}^{b}f(x)dx$$