Dikdörtgenin bir kenar uzunluğu $a$ birim olarak alınırsa, diğer kenar uzunluğu $18-a$ birim olur.
Bu dikdörtgeni $a$ kenarı etrafında yuvarlarsak $a$ taban çevresi, $18-a$ yüksekliği olur. $2.\pi.r=a\rightarrow r=\frac{a}{2\pi}$ olur. Bu silindirin hacmi $v=\pi.r^2.h \rightarrow v(a)=\pi.(\frac{a}{2\pi})^2.(18-a)=\frac{18.a^2}{4\pi}-\frac{a^3}{4\pi}$ birim küp olur. Hacmin $a$'ya göre türevi yani $v'(a)=0$ dan $a$ bulunur ve maksimum hacim hesaplanır.