Elbetteki, Jacobsthal dizisinin binet formülü Jacobsthal-Lucas dizisinin binet formülünün konjugesinin üçte birine eşittir ve ve bu binet formüllerinin çarpımı gerçektende n indislilerin çarpımı için 2n indisli Jacobsthal elemanına eşit oluyor ki bu değer [(4^n) - 1]/ 3 'e tekabül ediyor,
Sorum şu ki bu dizelerin binet formüllerini kullanmadan başka bir şekilde bu eşitliği ispatlayabilirmiyiz?
Klasik tümevarım(Dogrudan)* ile bir yere kadar gelinip ancak n indisi ile 2n indisi arasındaki birbirine indirgemenin yapılamamasını sezinledim
Acaba başka bir ispat yöntemi var mıdır
Lakin isterseniz bu paragrafı cevap olarak yayımlayabilirim hocam.
* Öyleki binet formülleri dahi dizinin tanımlarını temel alarak tümevarım yöntemleri(tümevarım da içeren) ile ispatlanması ile bu yazdığim ispatta aslında dolaylı yoldan Tümevarım ile ispata dayanır.