$a \leq b$ olduğunu varsayalım. Göstermek istediğin şey, fonksiyonun grafiğinin $a$'dan $b$'ye giderken $x$-eksenini keseceği. Birden fazla da kesebilir. Biz ilk kestiği yerle ilgilenelim.
$$ S = \{ t \in (a,b] \: : \: f\text{'in işareti } a\text{'dan } t\text{'ye kadar değişmiyor.}\}$$
kümesini ele al. Bu küme boş değil (burada sürekliliği kullanacaksın). Ve üstten sınırlı ($S$'nin her elemanı tanım gereği $b$'den küçük). Ama $b$'den küçük bir üst sınır da seçebiliriz $S$ için. Neden olmasın, dimi? $c$ sayısı $S$ için seçebileceğin EN KÜÇÜK üst sınır olsun. (Yani, $c$ bir üst sınır ve $c$'den küçük bir sayının $S$'nin üst sınırı olma ihtimali yok. Bir başka deyişle, $c$'den küçük bir $d$ sayısı seçersen $S$'in öyle bir $t$ elemanı var ki $d < t$ olur. Yani gerçekten $c$'den küçük hiçbir eleman üst sınır olamaz).
Soru: $f(c)$'nin işareti $f(a)$ ile mı aynı, $f(b)$ ile mi aynı? Yoksa bu ikisi de değil mi? Ikisi de değilse $f(c) = 0$ olmak zorunda.