$x\in\mathbb{R}\overset{\text{Neden?}}\Rightarrow (0\leq x\vee x\leq 0)$
I. Durum: $0\leq x$ olsun.
$\left.\begin{array}{rr} 0\leq x \overset{\text{Neden?}}{\Rightarrow} 0\cdot x\leq x\cdot x \overset{\text{Neden?}} {=}x^2 \\ \\ 0\cdot x\overset{\text{Neden?}}{=}0 \end{array}\right\}\Rightarrow 0\leq x^2.$
II. Durum: $x\leq 0$ olsun.
$\left.\begin{array}{rr} x\leq 0 \overset{\text{Neden?}}{\Rightarrow} 0 \overset{\text{Neden?}}{=}-0\leq -x \\ \\ \text{I. Durum} \end{array}\right\}\Rightarrow $
$\begin{array}{rcl} \Rightarrow 0\leq (-x)^2 & \overset{\text{Neden?}}{=} & (-x)\cdot (-x) \\ \\ & \overset{\text{Neden?}}{=} & (-1)\cdot x\cdot (-1)\cdot x \\ \\ & \overset{\text{Neden?}}{=} & (-1)\cdot (-1)\cdot x\cdot x \\ \\ & \overset{\text{Neden?}}{=} & -(-1)\cdot x\cdot x \\ \\ & \overset{\text{Neden?}}{=} & 1\cdot x\cdot x \\ \\ & \overset{\text{Neden?}}{=} & x\cdot x \\ \\ & \overset{\text{Neden?}}{=} & x^2.\end{array}$