$x^{23}-1=(x-1)(x^{22}+x^{21}+x^{20}+x^{19}+...+x^4+x^3+x^2+x+1)$ olduğundan
$x^{23}-1=(x-1)(x^{22}+x^{21}+x^{20}+x^{15}(x^4+x^3+x^2+x+1)$
$+x^{10}(x^4+x^3+x^2+x+1)+x^5( x^4+x^3+x^2+x+1)+x^4+x^3+x^2+x+1)$ Burada $x^{4}+x^3+x^2+x+1=0$ olduğu kullanılırsa
$x^{23}-1=(x-1)(x^{22}+x^{21}+x^{20})$ olacaktır.
O halde $\frac{x^{23}-1}{x^2+x+1}=\frac{(x-1)(x^{22}+x^{21}+x^{20})}{x^2+x+1}=\frac{(x-1).x^{20}(x^2+x+1)}{x^2+x+1}=(x-1).x^{20}$
olur.