$$A=[0,1]\setminus \left\{0,1,\frac12,\frac13,\ldots \right\}=(0,1)\setminus \left\{\frac12,\frac13,\ldots \right\}$$ olmak üzere $$f(x):=\left\{\begin{array}{ccc} \frac12 & , & x=0 \\ \frac{x}{2x+1} & , & x\in\left\{\frac1n|n\in\mathbb{N}\right\}\\ x & , & x\in A\\ \end{array}\right.$$ kuralı ile verilen $$f:[0,1]\to (0,1)$$ fonksiyonu bijektiftir (Neden?).