İspat doğru ancak tek başına "tek türlü yazılış" tanımı eksik kalıyor biraz.
Şöyle ki V, bir vektör uzayı ve B={V1;...,Vn}, V vektör uzayı için bir baz olsun.
O zaman V'deki her elemanın, B bazına göre yazılışı tek türlüdür.
Yani her v∈V için v=c1.v1+...+cn.Vn olacak şekilde c1,...cn∈F vardır.
Fakat bazı değiştirirsek, bu gösterim de değişir. Örneğin, B1={(1,0), (0,1)} ve B2={(2,0), (0,2)} olsun. B1 ve B2, R2 için birer baz teşkil eder.(4,0)∈R2 için, (4,0)=4.(1,0)+0.(0,1) dir.(B1 bazına göre), (4,0)=2.(2,0)+0.(0.1)dir.(B2 bazına göre)
S= {(2a,0) : a∈R} ve T= {(0,b) : b∈R} idi. S+T={(2a,b) : a,b∈R} R2nin alt vektör uzayları olsun.
Buradan aldığımız herhangi bir (2a,b) elemanını (2a,b)=(2a,0)+(0,b), (2a,0)∈S ve(0,b)∈T şeklinde tektürlü yazabiliyorduk. Ayrıca (2a,b)=2a.(1,0)+b.(0,1) şeklinde tektürlü yazabiliriz.(B standart bazına göre)
Yani S+T'nin elemanlarının yazılışının tek türlü olabilmesi için, S ve T'deki vektörlerin, V'nin bir B bazına göre yazılışı tek türlü olmalıdır. Yani V sonlu boyutlu olmalıdır.
(Küçük bir tanım: V, F cismi üzerinde bir vektör uzayı. S ve T de V'nin 2 alt vektör uzayı olsun. Eğer S ∩T=0v ise S+T alt vektör uzayına direkt toplam denir.)
Yani sorumuzu(teoremimizi) şöyle değiştirmemiz daha makul olur.
V sonlu boyutlu bir vektör uzayı, S ve T V'nin alt vektör uzayları olsun. S+T direkt toplamındaki her elemanın yazılışı tek türlüdür.