$$4^x+6^x=9^x\Rightarrow 2^{2x}+2^x\cdot 3^x=3^{2x} \Rightarrow 1+\left(\frac32\right)^x=\left(\frac32\right)^{2x}$$ olur. Buradan da $$y=\left(\frac32\right)^x$$ dersek $$1+y=y^2$$
yani $$y^2-y-1=0$$
olur. $$y^2-y-1=0$$ ise $$y=\frac{1-\sqrt{5}}2$$ veya $$y=\frac{1+\sqrt{5}}2$$ elde edilir. $$y=\left(\frac32\right)^x>0$$ olduğundan $$\left(\frac32\right)^x=\frac{1-\sqrt{5}}2$$ olamaz. Dolayısıyla $$\left(\frac32\right)^x=\frac{1+\sqrt{5}}2$$ olmalıdır. Buradan da gerekli işlemler yapılırsa $$x=\log_{\frac32}\left(\frac{1+\sqrt{5}}{2}\right)$$ değeri bulunur.