Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
536 kez görüntülendi

$(X,d_1),(Y,d_2)$ metrik uzaylar; $B(X,Y):=\{f|f:X\to Y \text { sınırlı}\},$ $C(X,Y):=\{f|f:X\to Y \text{ sürekli}\}$ ve $C_b(X,Y):=B(X,Y)\cap C(X,Y)$ olsun.

 

a) $D(f,g):=\sup_{x\in X}d_2(f(x),g(x))$ kuralı ile verilen $$D:B(X,Y)\times B(X,Y)\to\mathbb{R}^{\geq 0}$$ fonksiyonunun bir metrik olduğunu gösteriniz.

 

b) $C_b(X,Y)$ kümesinin $(B(X,Y),D)$ metrik uzayında kapalı olduğunu gösteriniz.

Lisans Matematik kategorisinde (11.5k puan) tarafından 
tarafından düzenlendi | 536 kez görüntülendi
surekli fonksiyonlar ve surekli ve sinirli fonksiyonlar kumelerinin soruyla alakasi ne hocam ?
Soruyu eksik yazmışım @eloi. Tekrar düzenledim.
20,281 soru
21,819 cevap
73,492 yorum
2,504,596 kullanıcı