$ a+b+c=k $ $olsun.$ $(k≠0)$
$$\left.\begin{array}{rr} a=k-b-c \\ \mbox{} \\ b=k-a-c \\ \mbox{} \\ c=k-a-b \end{array}\right\} olur.$$
$\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0$
$\frac{a.a}{b+c}+\frac{b.b}{a+c}+\frac{c.c}{a+b}=0$
$\frac{a(k-b-c)}{b+c}+\frac{b(k-a-c)}{a+c}+\frac{c(k-a-b)}{a+b}=0$
$\frac{ak-a(b+c)}{b+c}+\frac{bk-b(a+c)}{a+c}+\frac{ck-c(a+b)}{a+b}=0$
$\frac{ak}{b+c}-a+\frac{bk}{a+c}-b+\frac{ck}{a+b}-c=0$
$\frac{ak}{b+c}+\frac{bk}{a+c}+\frac{ck}{a+b}=a+b+c$
$k(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b})=a+b+c$
$\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{a+b+c}{k}$
$\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1$