Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
794 kez görüntülendi

  • $a+b+c\neq0$
ve

  • $\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0$

ise

$\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}$

ifadesinin değeri kaçtır?
Orta Öğretim Matematik kategorisinde (19 puan) tarafından  | 794 kez görüntülendi

İlk koşul sanırım $a+b\neq0$,  $a+c\neq0$,  $c+b\neq0$ olmalı.

 $a=b=1, c=-2$ koşulları sağlıyor. 

O zaman, toplam -3 bulunuyor. 

Başka (bu üç sayının permütasyonu veya katları dışında) üçlü bulabilir misin?

$\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}$ toplamını (uzun uzun) hesaplayabilir misin?

Cevap $1$ gözüküyor.

Ben o cevaba (ispatını görmeden) inanmıyorum. 

1 cevap

1 beğenilme 0 beğenilmeme
En İyi Cevap

$ a+b+c=k $   $olsun.$  $(k≠0)$

$$\left.\begin{array}{rr} a=k-b-c \\ \mbox{} \\ b=k-a-c \\ \mbox{} \\ c=k-a-b \end{array}\right\} olur.$$

$\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0$


$\frac{a.a}{b+c}+\frac{b.b}{a+c}+\frac{c.c}{a+b}=0$


$\frac{a(k-b-c)}{b+c}+\frac{b(k-a-c)}{a+c}+\frac{c(k-a-b)}{a+b}=0$


$\frac{ak-a(b+c)}{b+c}+\frac{bk-b(a+c)}{a+c}+\frac{ck-c(a+b)}{a+b}=0$


$\frac{ak}{b+c}-a+\frac{bk}{a+c}-b+\frac{ck}{a+b}-c=0$


$\frac{ak}{b+c}+\frac{bk}{a+c}+\frac{ck}{a+b}=a+b+c$


$k(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b})=a+b+c$


$\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{a+b+c}{k}$


$\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1$

(549 puan) tarafından 
tarafından seçilmiş

http://matkafasi.com/124538/bakar-misiniz-yapamadim

sorusuna yapıan yorumlarda biraz daha kısa bir çözüm yapılmış.

Anlaşılır olsun diye her aşamasını tek tek yazdım. Mantığı kavradıktan sonra tek tek bu aşamaları yapmasına gerek yok zaten. Çözüm olarak bakıldığında a²,b²,c² yi ayırıp a,b,c yerine k'lı ifadelerini yazdığında gerisi 4 işlem zaten. Alternatif cevaplar da tek çatı altında toplansa güzel olur.

Çok açık ve güzel, teşekkür ederim.

20,274 soru
21,803 cevap
73,476 yorum
2,428,341 kullanıcı