$$I=\int_{-2}^{2}\frac{1+x^2}{1+2^x}dx$$ diyelim.
$$ x=-y$$ dönüşümü yaparsak $$I=\int_{-2}^{2}\frac{1+y^2}{1+2^{-y}}dy$$ olur. $$I+I=\int_{-2}^{2}\frac{1+x^2}{1+2^x}dx+\int_{-2}^{2}\frac{1+x^2}{1+2^{-x}}dx$$
$$\Rightarrow$$
$$2I=\int_{-2}^{2}\left(\frac{1+x^2}{1+2^x}+\frac{1+x^2}{1+2^{-x}}\right)dx$$
$$\Rightarrow$$
$$2I=\int_{-2}^{2}(1+x^2)dx$$
$$\Rightarrow$$
$$2I=2\int_{0}^{2}(1+x^2)dx$$
$$\Rightarrow$$
$$I=\frac{14}{3}$$ elde edilir.